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Conformal anomaly and surface energy for Potts and 
Ashkin-Teller quantum chains 

C J HamerfS, G R W Quispelt and M T Batchelor311 
+ Department of Theoretical Physics, Research School of Physical Sciences, Australian 
National University, Canberra,  ACT 2601, Australia 
5 Department o f  Mathematics, The Faculties, Australian National University, Canberra ,  
ACT 2601, Australia 

Received 8 May 1987 

Abstract. Exact equivalences between the critical quantum Potts and  Ashkin-Teller chains 
and  a modified X X Z  Heisenberg chain have recently been derived by Alcaraz et al. The 
leading finite-size corrections to the ground-state energies of these chains are derived using 
the methods of d e  Vega, Woynarovich and  Eckle. Exact results are  then obtained for the 
conformal anomaly of each model,  and  for the surface energy in the case of free boundaries.  

1. Introduction 

There has been great interest recently in calculating the leading finite-size corrections 
to eigenvalues of the transfer matrix or quantum Hamiltonian for various lattice spin 
models in two dimensions. Cardy (1984, 1986a) and others (Blote er al 1986, Affleck 
1986) have shown that these finite-size corrections are directly related to the critical 
indices and  conformal anomaly of these models by the hypothesis of conformal 
invariance. I f  these asymptotic corrections can be derived analytically for the known 
exactly soluble models, one can either check the validity of conformal invariance from 
the known exponents, or else, assuming the hypothesis holds, one can obtain exact 
expressions for various critical exponents. 

A method was given previously by de  Vega and Woynarovich (1985) for calculating 
the leading finite-size corrections for any model which is soluble by the Bethe ansatz. 
They derive integral equations for the finite-size corrections, similar to those which 
give the bulk ground-state energy. To solve these equations, they use a saddle-point 
approximation which is valid only when the mass gap is non-zero, i.e. the system is 
non-critical. It was shown by Hamer (1985) and Avdeev and Dorfel (1986) that this 
restriction is unnecessary, and that the equations could also be used to give the 
corrections to the ground-state energy in the critical region. The methods used by 
these latter authors were somewhat crude, however, and were not capable of giving 
correction-to-scaling terms (Privman and Fisher 1983) beyond the leading order, o r  
the finite-size behaviour of the excitation spectrum. More recently, Woynarovich and 
Eckle (1987) have introduced more powerful methods, involving the use of the Euler- 
Maclaurin formula and a Wiener-Hopf integration, which overcome these difficulties. 
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Here we apply these methods to study the ground-state energy of the critical 
quantum Potts and Ashkin-Teller chains. Both these systems can be exactly related 
to a modified X X Z  Heisenberg chain (Hamer 1981, Alcaraz et a1 1987a, b, c); and 
Alcaraz et al have recently carried out extensive numerical studies on them, calculating 
the eigenvalue spectrum for chains of up  to 512 sites, and extracting accurate values 
for the conformal anomaly and critical exponents. A very complete picture of their 
structure has thus been obtained, in agreement with the predictions of conformal 
invariance. It is our object to confirm some of these results analytically. 

Consider then the modified X X Z  Heisenberg Hamiltonian (Alcaraz eta1 1987a, b, c )  

H=-- E (  a;uJ+ + U,' a,'+ I + A a; ay+ I ) + p a ;  + p ' a  L, (1.1) ) 2 Y , = I  

where N is the number of sites, U:, U:, af are Pauli matrices, A = -cos y and y E [0, T). 
There are three main cases of interest: 

(A) p = p '  = 0, N'  = N, boundary conditions 

a h + l  k i a h + ,  =eI4(a;  *iai) a"+I =a; .  (1.2) 

The eigenvalues of the critical q-state Potts Hamiltonian with periodic boundary 
conditions on a lattice of M sites can be exactly related (Alcaraz er a /  1987a, b)  to 
those of chain A with N = 2 M sites, where cos y = $ J q  and @ = 2 y. 

(B)  p = - p ' =  i sin y, N ' =  N - 1, free boundaries. The eigenvalues of the critical 
q-state Potts chain on M sites with free boundaries are related (Alcaraz er a1 1987a, b, c) 
to those of the chain B, where again cos y = 

( C )  p = p '  = 0 ,  N '  = N - 1, free boundaries. The eigenvalues of the critical Ashkin- 
Teller chain on M sites with free boundaries are related (Alcaraz er a1 1987a, b, c )  to 
those of chain C with 2 M  sites, where the Ashkin-Teller coupling A = cos y. 

In § 2 we set out in some detail the treatment of the simple X X Z  Hamiltonian with 
periodic boundary conditions. This system has already been dealt with by Woynarovich 
and Eckle (1987), but it is a useful standard of comparison for the other cases, and 
serves to keep the paper self-contained. In § 3 the modified Hamiltonian (1.1) is briefly 
treated as a variation on the theme of § 2; and in § 4 our results for the conformal 
anomaly and surface energy of the quantum Potts and Ashkin-Teller models are 
summarised. 

and N = 2M.  

2. The XXZ model 

Consider first the simple X X Z  model, i.e. equation (1.1) with N ' =  N, the 'surface 
fields' p = p '  = 0, and periodic boundary conditions. The number of sites N will be 
assumed even throughout. The Bethe ansatz for this system was discussed in detail 
by Yang and Yang (1966); we shall use the notation of de Vega and  Woynarovich 
(1985) and Hamer (1985). Questions of mathematical rigour will be neglected, since 
the system has already been treated by Woynarovich and Eckle (1987). 

The total number m of down-spins in the chain is conserved, and the ground state 
lies in the sector m = N / 2 .  The Bethe ansatz for the eigenstates involves a momentum 
p, for each down-spin, and the periodic boundary conditions are satisfied if 
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where 

and the I, are integers or half-odd integers, given by 

The energy is 
m 

E = - f N A + 2  C (A- COS^,). (2.4) 

p=Ztan- ' [co t ( ;y)  tanh A ] = 0 ( A , i y )  ( - W < A  <CO) (2.5) 

, = I  

In  the critical region a convenient change of variables is 

then (2.1) becomes 

and the energy is 
m 

E = i N  cos y-sin y c 0 ' ( A , , f y )  (2.7) 
, = I  

where the prime denotes differentiation with respect to the A variable. Note that 

2s in  y 
0'( A, f y )  = 

cosh 2A -COS y 

De Vega and  Woynarovich (1985) then define the function 

1 "  
N,=i  

0 ( A , ; y ) - -  @ ( A  -A,, y ) )  (2.9) 

so that 

ZN ( A , )  = I , /  N 

f f ~  ( A  ) = dZN / d A. 

(2.10) 

(2.11) 

i.e. the roots are uniformly spaced in the variable Z ;  the derivative is denoted 

Integrating over all A one finds 
s 

C T N ( A )  dA = f .  J-. (2.12) 

When N goes to infinity, the roots A ;  tend to a continuous distribution with density 
Na,(A) and the sums reduce to integrals. The asymptotic root density satisfies 

and  the energy per site is 
X 

e,= lim ( E / N )  =:cos y-s in  y dA c ~ ~ ( h ) i Z I ' ( A , $ y ) .  (2.14) 
N - a  
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The integral equation (2.13) can be solved by a Fourier transform to give 

cr,(A) = [2y cosh(xA/y)]- '  (2.15) 

and hence one obtains the ground-state energy per site (Yang and Yang 1966) 

dh  1 
 COS^ T A  [ c o s ~ ( ~ ~ ~ ) - c o s  r]' (2.16) 

For finite N, de Vega and  Woynarovich (1985) show that one can recast the problem 
in terms of a similar set of integral equations. After some manipulations, one finds 
that the difference between the finite and the infinite system is 

for the root density, and  

eh: - e , =  - 2 x  sin y 

for the energy per site, where the kernel p ( A )  is defined by 

sinh[( x -2y)w/2]  
{s inh[ (x-22y)o /2]+s inh(xw/2)}  

X 

p ( A  1 = 4 I-, dw elhw (2.19) 

and the A ,  are the roots of the finite system. I t  was shown by Hamer (1985) that the 
simple approximation c N ( A )  = c r , ( A )  in (2.18) is sufficient to give the leading-order 
behaviour of the energy difference, and hence the conformal anomaly for this model. 

A more systematic approach has been formulated by Woynarovich and Eckle (1987). 
Let 

1 "  
N , = I  

SN(A)=- 1 8(A - A , ) - u N ( A )  (2.20) 

then one can use the Euler-Maclaurin formula to show that 

(2.21) 

for an arbitrary function g(A) analytic in [-.A, A], where A is the root of largest 
magnitude, determined by 

1 1  
4 2 N  

Z,W(A) =--- 

or 

(2.22) 

(2.23) 

and the error in (2.21) is O( N - 4 d 4 g ( & ) / d ~ 4 ) ,  for some - A s  6 s  A.  We have used the 
fact that c r N ( A )  is symmetric in A.  
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Applying this to the energy per site, one finds 

a'(A) ) (2.24) uCC(A) eN - e ,  =4i? sin y dA a,(A)u,(A) 2 N  12N2u,(.A) 

while for the root density 

(2.25) 

Now we are interested in the asymptotic behaviour of the root density for A 2 A.  
In this region the terms inside the large brackets in (2.25) can be treated as small 
perturbations, and will be dropped henceforth. The remaining equation has a Wiener- 
Hopf form, similar to (but not identical with) the equation treated by Yang and Yang 
(1966). 

2.1. The Wiener- Hopf equation 

Define 

k ( A )  = P ( A  )/.n 

f ( A )  = a x ( A  + A )  

and 

X( A ) = U N  ( A  + A )  

then setting t = A - A we obtain from equation (2.25) 

(2.26) 

(2.27) 

(2.28) 

1 1 x ( t ) - 5,' k ( t - s ) X  ( S )  d s  -f( t ) - - k ( t ) + k ' ( t )  (2.29) 
2 N  12 N 2 V N  ( 'A) 

which is the standard form of the Wiener-Hopf equation treated by (for instance) 
Krein (1962) or Morse and Feshbach (1953). Define Fourier transform pairs ,y * X, 
k * K ,  f c, F, e.g., 

(2.30) 

. r x  
I 

X ( t )  =- J e- '" 'X(w) dw. 
2 7  (2.31) 

Then following the standard treatments we first study the kernel of the equation. We 
have from (2.19) 

sinh( 7rw/2) 
2 sinh[(i? - y)w/2] cosh( yw/2)' 

1 - K ( w ) =  (2.32) 

Using the decomposition 

T cosec TTTZ = r( z)T( 1 - Z )  (2.33) 
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to 'factorise' (2.32): 

(2.34) 

where p * ( w ) ,  q,(w) are entire functions with zeros in the interior of the lower and  
upper halves T= of the complex w plane, respectively: 

P + ( W  1 
q+(w )q- (w 1 l - K ( w ) =  

1 
l-( 1 - i w / 2 )  

= p - (  - w )  p + ( w )  = (2.35) 

then we can assert at once that 

[ l  - K ( w ) ] - ' = G + ( w ) G _ ( w )  (2.37) 

where 

G + ( w ) = [ 2 ( ~ - y ) ] " ' T ( l  -$iw)e""' = G-( - w ) .  

(2.38) 

Here G , ( w )  are holomorphic and continuous in the half-planes T, respectively, while 
$ ( U )  is an  entire, odd function of w. 

Next determine $ ( w )  by imposing the condition that G,(w) are continuous and 
equal to 1 at I w I + 00 (in T + ,  respectively). Stirling's formula may then be used to 
show that 

(2.39) 

Now we return to the Fourier transformed version of our original equation (2.29). 
The functions X ( w )  and F ( w )  may be split into f components (holomorphic and 
continuous in rr*, respectively), by e.g., 

X ( w )  = X + ( w ) + X _ ( w )  
JT 

X , ( w )  = e'"'x,(t) d t  
-X 

X ( t )  f o r t s 0  
for t 5 0. 

(2.40) 

(2.41) 

(2.42) 

Then (2.29) gives rise to the equation 

X _ ( w ) + ( l -  K ( w ) ) ( X , ( w ) -  C ( W ) )  = F + ( w ) + F - ( w ) -  C ( W )  (2.43) 

where C ( w )  is an  entire function 

1 iw 
C ( w )  = -+ 

2 N  12N2CT,(A)' 

Now use (2.37) to obtain 

(2.44) 

(2.45) 
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Our aim is to separate out terms which are analytic in the two half-planes 7 r + .  The 
final term is not in the required form and  must be further split: 

G- (w)F+(w)=  Q + ( w ) + Q - ( w ) .  (2.46) 

Then one can write 

( X + (  w )  - C (  U ) ) /  G+(w)  - Q+(w)  = Q-( U )  - G-( w ) [ X - ( W )  + C( W )  - F - ( w ) ]  P(w). 
(2.47) 

The left-hand side of this equation is analytic in 7 r + ,  the right-hand side in 7 r - .  There 
is a common strip of regularity including the junction of the half-planes ir*, so the 
right-hand side is the analytic continuation of the left-hand side into T - .  The function 
P ( w )  so defined is therefore entire, and can be determined from the asymptotic 
behaviour of one of its defining expressions. Hence we may solve for X + ( w )  and X - ( w ) .  

As I w 1 +cc in 7 r + ,  X + ( w )  + 0 (from the requirement that x+( t )  be integrable at the 
origin), Q+(w)  + 0 (see below), and using asymptotic expansions for the r functions 
in (2.38) one finds 

(2.48) gl g2 
14-x w w 

G + ( ~ )  - 1 +-+,+o(~-') 

where 

Hence one obtains 

ig, 1 iw 
12N2a, (A)  2 N  12N2a , (A) '  

P ( w )  = 

From (2.15) and (2.27) we have 

e - I w  \ 

2 cosh ( $ y o ) '  
F ( w )  = 

Keeping only the leading pole term in 7 r - ,  we therefore have 

e-lW \ 
F+(w)=-. 

ir-iyw 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

Therefore 

G - ( w ) F + ( w )  =(n- iyw) - ' { [G_(w)  e- '" ' \-G-(-i7r/y) e -T ' ly]  

+ G-(-i7r/y) e-*"Y} (2.53) 

where the pole term has been added and subtracted again to show that 

G-(- i i r /y)  e-""Y - G+( i i r /y )  e-""Y - 
( 7r - i y o )  ( 7r - i yw ) 

Q + ( w )  = 

Finally, then, we obtain a solution from (2.47): 

(2.54) 

X + ( w ) = ~ ~ e ' ~ ~ x ( r ) d i = C ( w ) + G + ( w ) [ P ( w ) + Q + ~ w ) ]  (2.55) 

where the functions on the right-hand side are known. 
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2.2. Results 

The solution (2.55) may now be used to determine the finite-size corrections. First, 
recall the constraint (2.23) 

Therefore 

that is 

G + ( i x / y )  - 1 ig, 
x 2 N 1 2 N 2 a N  ( A ) '  

(2.57) 

Next, from the definition (2.28), 

where 

ig, G + ( i x / y )  e-""Y g :  +-+ 
4 8 N 2 a N ( A )  4 N  2 Y  

(2.59) 

obtained by contour integration. The factor 2 in (2.58) appears because X + ( t )  drops 
discontinuously to zero at t = 0, so the Fourier transform (2.59) gives only half the full 
X ( 0 ) .  

Substituting (2.57) into (2.59), one finds the result 

(2.60) 

showing an explicit 1/ N dependence. Finally, approximating (2.15) 

a,(.4) = y- '  e-="" (2.61) 

and  using (2.57) and (2.60), the equation (2.24) gives rise after a little algebra to: 

e, -e, = - x 2 s i n  y /6yN2  

as derived previously by Hamer (1985). 
There are corrections to this result, which arise from the four approximations made 

in the derivation. Firstly, the approximations at (2.25) and (2.61) are essentially 
equivalent: the next order terms give rise to corrections O( / N )  = O( W4) in 
(2.62), using (2.57) and (2.60). Secondly, there is the error made in the approximation 
(2.21), which is also O ( w 4 ) .  Finally, there are the bracketed terms in (2.25) which 
were dropped. These introduce corrections? O(p(2,1)/ N )  into the determination of 
a N ( A )  and e-""". Now from (2.19), 

(2.62) 

dw elAw(l -coth[(rr - y)w/2]tanh(iyw)}. (2.63) 

+ This argument is actually oversimplified. More careful consideration shows that the perturbative correction 
S u z I ( A )  obeys a higher-order Wiener-Hopf equation, in  which the terms discussed here correspond only to 
the inhomogeneous piece. However, we have checked that this naive argument does give the order of 
magnitude correctly for the cases discussed in this paper. 



Conformal anomaly for Potts and Ashkin- Teller models 5685 

This function has been analysed by Yang and Yang (1966). Completing the contour 
in the upper half-plane, the leading poles at w = ir/ y and w = 2 i r / (  r - y )  imply 

(2.64) + C2 e - 2 ~ A / ( ~ -  y )  p ( ~ )  - c,e-TA'Y 
A - ,  

(2.65) 

Hence finally we find 

eM - e ,  = -( rz sin y /6  y N ' ) [  1 + O( N-2) + O( N-4y""-y')]. (2.66) 

These correction terms were first obtained (and  are discussed in more detail) by 
Woynarovich and Eckle (1987). 

The limiting case y + 0 requires separate consideration. It may be treated by taking 
the limit y + 0 in the formulae above, after first rescaling variables as follows: A + yA, 
w + w /  y, a + a/ y, p + p /  y. One finds that to leading order 

e ,  - e ,  = - l r / 6 N 2  (Y = ( ) I  (2.67) 

as expected. The rescaled kernel is 

(2.68) 

Hence one finds the correction-to-scaling terms are logarithmic in this case, 

eN - e ,  = -( r / 6 N 2 ) [  1 +O(ln N)-3] 

as discussed in more detail by Woynarovich and Eckle (1987). 

(2.69) 

3. The Potts and Ashkin-Teller models 

As outlined in the introduction, equivalences can be found (Alcaraz et a1 1987a, b, c )  
between the eigenvalues of the critical Potts and Ashkin-Teller chains and those of 
the modified X X Z  Hamiltonian (1.1). Here we shall consider two particular versions. 

(A) Same as case A in the introduction; 
(B)  N' = N - 1, free boundaries. Cases B and C of the introduction are then special 

cases of this. 
In  each case, the finite-size corrections to the ground-state energy per site can be 

found following a very similar procedure to that of B 2. Here we shall merely indicate 
the significant differences which occur in each case. 

3.1. The Bethe ansatz equations 

The boundary conditions imply for case A (Alcaraz et a f  1987a, b)  with m = N / 2  
m 

Np,=2rZ ,+@-  c O(P, ,P/ )  I,  = -+( m + 1 ) + j j =  1 , .  . ., m (3.1) 
I =  I 

or 
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For case B, one finds (Alcaraz et al 1987c) the corresponding equation ( m  = N / 2 )  
m 

I, = j  j =  1 , .  . . , m (3.3) 

where 
p t  - A - 

e2'" = p - A  - ely e2il" = 
(p  - A )  e i y  - 1 (p'-A) e iy  - 1 ' 

The energy is 
m 

E = - $ N A + 2  C (A-COSP,)  (A )  
, = I  

m 

, = I  
E = - ( N - l ) A / 2 - f ( p + p ' ) + 2  ( A - C O S P , ) .  ( B )  

(3.4) 

(3.5) 

(3.6) 

Changing variables as in (2.9), the function Z,(A) can once again be defined such 
that Z,(A,) = I , /  N, as follows: 

(3.7) 

(3.8) 

In fact, for case B the root density is symmetric about A = 0, and so we can rewrite (3.8) 

1 
-- 2 N  I = - m  f @(A-A,,y)). (B)  

The sum rules corresponding to (2.12) are 

3.2. The thermodynamic limit 

The resulting integral equations valid when N --f OD are 

(3.9) 

(3.10) 
( 3 . 1 1 )  

(3.12) 

(3.13) 



Conformal anomaly for Potts and Ashkin- Teller models 5687 

and 

e ,=icos y-sin y dA ur(A)O'(A,+y) (A)  (3.14) 

(B)  (3.15) I: e ,= icos  y- is in  y dAux(A)O'(A,;y). 

The solutions are 

(3.16) 
(3.17) 

dA 1 
e, = + cos y - sin-y (A, B) 

-x  cosh(rA) C O S ~ ( ~ ~ A ) - C O S  y '  
(3.18) 

The asymptotic root density is twice as large in the case with free boundaries, but the 
energy per site is the same, as of course it must be. 

- I  

3.3. Finite-size corrections 

The integral equations giving the finite-size corrections are: 

and 

where 

sinh[(.rr -2I')w/2] 
sinh[( .rr -2y)w/2] + sinh( .rrw/2) 

X 

p , ( A ,  r) = $  1 dw e'"* 

p z ( A )  = [ dw eluA 
-w 

--x 

sinh[ ( .rr - 2 y ) w / 4]cosh( .rrw / 4) 
sinh[ ( T  - 2y)w /2] + sinh( 7rw/2) 

X 

(3.21) 

(3.22) 

while 

eN-e,=-2.rrsiny S ( A - A t ) - u N ( A ) )  ( A )  (3.23) 

eN - em = -f.rr sin y dh  uuc(A) S(A - A , )  - U,(A )) 5: i ,=:, 

(3.24) 
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The Euler-Maclaurin formula can be applied as before to give: 

e, - e, = 277 sin y [ ([:+dh ) U ~ ( ~ ) U N ( ~ ) - ( ~ / ~ N ) ( U ~ ( A + ) + U ~ ( - A - ) )  

where the cutoffs are given by 

(3.30) 

Note that U,(,+) and the cutoffs A ,  are not symmetric in case A, as they are in case 
B. In order for the right-hand side of (3.30) to be positive, we henceforth impose the 
condition y + I- + I" s 3 77/2. 

3.4. Wiener-Hopf equations 

The Wiener-Hopf equations are the same in each case, and in particular the kernel 
functions K ( w ) ,  G+(o>) are identical to those in # 2. The only differences lie in the 
inhomogenous term: 

(3.31) 

(3.32) 
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3.5. Results 

Applying the constraints (3.29) and (3.30) we obtain 

Q, 
F ( A )  

1 VI - G,( in /y )  e-"'='Y 
77 2 N 12 NZuN(*A*) 2rrNG+(O) 

2 G + ( i ~ / y ) e - " " ~  1 ig, ff 
- 

rr 2 N 1 2 N2 mN ( Ji) + 

a=-!--[l-( y+r+r '  7T )]. ( B )  
G+(O) 

(3.33) 

(3.34) 

Hence for the root density at the cutoff: 

- 2 irrg, 1 

(3.35) 

2 77ff 

Y 

Then finally for the energy per site 

) (A) 
2 sin y 

eN - e ,  = --( 1 -  
6 y N 2  rr'G+(O)* 

(3.37) 

cos y + p + p ' - r r s i n  y c X ( o )  
2 N  

n'sin y 
eN -e., = -___ 

24yN' 

The corrections to these results can be derived along the same lines as in B 2. The 
leading terms in case B come from the 'surface terms' in (3.28), 

Hence one finds that the leading corrections to (3.37) and (3.38) are 

(3.39) 

In  the limiting case y -+ 0, after rescaling one finds: 

e,., - e ,  -- '@' ) (A) 
6:' (' - T*G+(O)~ (3.41) 
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where the rescaled functions of interest are: 

1 
cosh ( T A  ) 

u , ( A )  = 

cos( A w )  - o ( A - ~ )  
cosh(w/2) A - ,  

P Z ( A  1 = ’ dw 2 

and 

cos( A w )  e l l - 2 i . , w / z  - (2F- 1) 
p , ( A , F ) = f l o m d w  cosh(w/2) A - x  4A2 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

with 

F‘=Iim (:). 
Y - n  

F = lim (:) 
Y - 0  

Hence the leading correction to e N  - e ,  is O ( p ( A ) /  N2) = O((lnN)-2/ N 2 )  in case B. 
For case A we find the coefficient at this order vanishes as for the simple X X Z  model 
(Woynarovich and Eckle 1987), so that the leading correction is O((lnN)-3/ N 2 ) .  

4. Conclusions 

The finite-size scaling form of the ground state energy per site is predicted by conformal 
invariance (Blote et a1 1986, Affleck 1986) to be: 

(periodic boundary conditions) (4.1) T5c e,., = e ,  - ~ + O ( W > )  
6 N  

(free boundary conditions). (4.2) 

Here ex  and fK are, respectively, the bulk limits of the ground state energy per site 
and surface energy, c is the conformal anomaly which governs the critical exponents 
of the system, and 5 is a scale factor which is independent of the boundary conditions 
and is known (Hamer 1985) to be 

fr + O ( N - 2 )  e N = e , + - - -  
N 2 4 N 2  

C=(.rrsin y ) / y  (4.3) 
for the X X Z  Hamiltonian (1.1). The value of e ,  is the same for all the models discussed 
in this paper, and is given by equation (2.16). 

To translate the results of 5 3 for the cases A, B, and C of the introduction, we 
need to make the following replacements: 

(A) Potts model with periodic boundaries: 

set @ = 2 y  cos y = f Jq in case A of 5 3. 
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(B) Potts model with free boundaries: 

in case B of P 3. I cy=--= 
rG+(O) [ 2 r (  r - y ) ] ” ’  

(C)  Ashkin-Teller model with free boundaries: 

set p = p ’ = O  r=r’=’( 2 r  - y )  a = o  

in case B of $ 3. 

Thus one arrives at the following conclusions. For the q-state Potts model with 
either periodic or free boundary conditions, the conformal anomaly has been shown 
to be 

6 y’ = I -  12y2 
4 9 )  = 1 - 

r’( G+(0))2 r( r - y )  

where 

o s  y s  7712. J4 c o s y = -  
2 (4.4) 

This agrees with the values predicted from conformal invariance (Blote et a1 1986, 
Affleck 1986, Dotsenko 1984), with the numerical results of Alcaraz et a1 (1987a, b, c), 
and with other analytic derivations by Kadanoff and Nienhuis (quoted in Friedan et 
a1 (1984)) who studied the four-point correlation function and by de  Vega and Karowski 
(1987) who derived the finite-size scaling behaviour of the free energy in the equivalent 
six-vertex model with ‘seam’. 

For the Ashkin-Teller model with free boundaries, the conformal anomaly has 
been shown to be 

c(A) = 1 all A (4.5) 

which is the value predicted from conformal invariance because of the non-universal 
behaviour of its critical exponents. It also agrees with the numerical calculations of 
von Gehlen and Rittenberg (1987) and Alcaraz et a1 (1987a, b, c). 

The surface energy fi is a non-universal quantity. For the Potts model with free 
boundaries our result from (3.38) reduces to 

r s i n  y c o s y  sin y 
fx=----- dk[ 1 - coth($rk)  tanh(4 y k ) ]  

2Y 2 4 I-, (4.6) 

while for the Ashkin-Teller model with free boundaries one obtains 

r sin y cos y sin y fx=----- dk[ l  - t anh(a rk )  tanh(4yk)l. (4.7) I 2Y 2 4 --;c 

Upon evaluating these expressions, the results are in precise agreement? with the 
numerical estimates of Alcaraz er al (1987~) .  

t All our  results quoted are  actually for the equivalent X X Z  models. We have not translated them back to 
the original Potts o r  Ashkin-Teller models. 
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The leading correction-to-scaling terms have also been estimated in § 3. For the 

(A) N-'[O( W 2 )  +0( N - 4 Y " " - y ' ) ]  for the Potts model with periodic boundaries 

( B )  N - ' [ o ( N - ' ) + o ( N - ~ ~ ' ( ~ - ~ ~  ) ]  for the Potts model with free boundariest 
( Y > O ) ,  

(C) N-?[O(N-l)+O(N- 'YI '"-Y '  )]  for the Ashkin-Teller model with free boun- 

In the limit y .+ 0 the corresponding results are: 
(A)  N-?[O((ln N ) - ' ) ]  as for the X X Z  model, and as predicted by Cardy (1986b) 

(9,  C) N-'[O((ln N ) - ' ) ] .  

corrections to e N  - e ,  we find: 

( y > 0), just as for the X X Z  model (Woynarovich and Eckle 1987), 

daries ( y > 0).  

from conformal invariance; 

Note that case A, y + 0, corresponds to the four-state Potts model. We have confirmed 
that the coefficient of the leading correction term in this case is given by: 

e h - e ,  - -%(l+----) 0.3433 
\'-i 6 N '  (In N ) 3  

as was found by Woynarovich and Eckle (1987). This coefficient differs from the value 
$ predicted by Cardy ( 1986b) on the basis of renormalisation group arguments. 

Finally, Alcaraz et a1 (1987a, b )  have found that the difference in the ground-state 
energy for @ = n and @ = 0 in case A gives the mass gap amplitude corresponding to 
the Ashkin-Teller polarisation exponent. Our results show that for this case 

7~ ' s in  y n s i n  y 
eh ( @  = n j  - e ,  (@ = 0 )  = + O ( N  ? )  \XX yN" 2 7Tx 4yN77T- y )  

where x is the scaling dimension of the polarisation operator; and therefore 

77 
x=-, 

an-?) 
(4.9) 

This provides an analytic confirmation of the results of Alcaraz et a1 (1987a, b).  
I t  is possible to generalise the above slightly. Equation (3.3) is real provided 

( i )  ( p  - A ) ( p ' - A )  = 1 or 

( i i j  p* = p '  or (4.10) 

( i i i )  I m p  = Im p '  

In  each of these three cases the conformal dnomaly is given by 

wherei 

(4.11) 

(4.12) 

+ The coefficient of the term O( N ' I T  " J  quoted in 5 3 banishes for this case. 
i I t  is interesting to observe that this corresponds to the conformal anomal) for a Coulomb-like system with 
a charge -2a = y- t an  ' [ ( I  - R I  ' tan y ] (  7'- 7 7 )  ' ' at infinity (Dotsenko and Fateet 1984). 
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This would indicate that the Potts model is attained as a singular limit in parameter 
space. We hope to report on this more extensively in the future. 

Using the methods of Woynarovich and Eckle (1987), we have thus been able to 
derive the finite-size scaling behaviour of the ground-state energy of the critical Potts 
and Ashkin-Teller chains, using the equivalences between these and the modified X X Z  
chains found by Alcaraz et a1 (1987a, b, c).  These methods can also be used to explore 
the spectrum of excited states, as shown by Woynarovich (1987) for the X X Z  model. 
We hope to carry out this exercise for the Potts and Ashkin-Teller chains in future work. 
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